SAMPLE QUESTIONS

PHYSICS

1.	The electric field at a distance 8 cm from an infinite line charge is 9.0×10^5 N C ⁻¹ . The corresponding line charge density is			
	A) $0.5 \ \mu C \ m^{-1}$	B) 1.0 μC m ⁻¹	C) 2.0 μ C m ⁻¹	D) $4.0 \ \mu C \ m^{-1}$
2.	The quantity of charge flowing at any instant of time <i>t</i> through the cross-section of wire is given by $q(t) = 3t^2 - 9t + 6$. The value of the current in the wire at t = 4 s will be			
	A) 10 A	B) 12 A	C) 15 A	D) 18 A
3.	The substances for which the value of magnetic permeability is just more than unity are called			
	A) diamagnetics	B) ferromagnetics	C) antiferromagnetics	D) paramagnetics
4.	A thin convergent glass lens of refractive index 1.5 has a power of + 5 D. When this lens is immersed in a liquid of refractive index μ_{ℓ} , it acts as a divergent lens of focal length 100 cm. The value of μ_{ℓ} is			
	A) 1.667	B) 1.333	C) 1.556	D) 1.444
5.	The correct order in which frequency of the following electromagnetic radiations increases is			
	 A) Microwaves, Ultraviolet rays, X-rays 	 B) Ultraviolet rays, Microwaves, X-rays 	C) Microwaves, X-rays, Ultraviolet rays	D) X-rays,Ultraviolet rays,Microwaves
6.	The ratio of mass defect of the nucleus to its mass number is maximum in the nuclei of			
	A) N ¹⁴	B) Cu ⁶⁴	C) Fe ⁵⁶	D) U ²³⁸
7.	Consider the combination of gates as shown in figure below. The output Y of the combination will be			
	°−− −		A) $A \cdot A \cdot B$	
			B) $A + A + B$	
		Y ⊂	C) $A \cdot A + B$	

8. If I_1 and I_2 are intensities of two waves and α is the phase difference between two light waves of same frequency, then the resultant intensity I_r is given as

D) $A + A \cdot B$

- A) $I_r = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos \alpha$ B) $I_r = I_1 + I_2 + 2\sqrt{I_1 I_2} \sin \alpha$ C) $I_r = I_1 + I_2 + \sqrt{2I_1 I_2} \cos \alpha$ D) $I_1 I_2 + 2\sqrt{I_1 + I_2} \sin \alpha$
- 9. The distance of closest approach of an alpha particle fired at a nucleus with a kinetic energy K is r_0 . If the kinetic energy is doubled, the distance of closest approach becomes

A)
$$r_0/2$$
 B) $2r_0$ C) $r_0/4$ D) $4r_0$

10. Two bar magnets with their north poles having strengths $Q_{m1} = 20$ A m and $Q_{m2} = 10$ A m (magnetic flux charges) are placed inside a volume as shown in the figure. The magnetic flux leaving the volume is

 $\Leftrightarrow \Leftrightarrow \Leftrightarrow \Leftrightarrow \Leftrightarrow \Leftrightarrow$