DAY and TIME		COURSE	SUBJECT		
DAY-1 10.30 am to 12.30 pm	co	/M.Tech/M.Arc urses offered by	ENCINEEDING		
SESSION: FORENOON	T VTU	J/UVCE/UBDT(CE 2.101-11-11		
MAXIMUM MARKS	TOTAL DI	URATION MAX	MAXIMUM TIME FOR ANSWERING		
100	150 MIN	IUTES	120 MINUTES		
MENTION YOUR PG	CET NO.	QUESTI	ON BOOKLET DETAILS		
		VERSION CODE	SERIAL NUMBER		
		A - 3	120075		

DOs:

- 1. Check whether the PGCET No. has been entered and shaded in the respective circles on the OMR answer sheet.
- 2. Ensure whether the circles corresponding to course and the specific branch have been shaded on the OMR answer sheet.
- 3. This Question Booklet is issued to you by the invigilator after the 2nd Bell i.e., after 10.25 a.m.
- 4. The Serial Number of this question booklet should be entered on the OMR answer sheet.
- 5. The Version Code of this question booklet should be entered on the OMR answer sheet and the respective circles should also be shaded completely.
- 6. Compulsorily sign at the bottom portion of the OMR answer sheet in the space provided.

DON'Ts:

- 1. THE TIMING AND MARKS PRINTED ON THE OMR ANSWER SHEET SHOULD NOT BE DAMAGED/MUTILATED/SPOILED.
- 2. The 3rd Bell rings at 10.30 a.m., till then;
 - Do not remove the paper seal / polythene bag of this question booklet.
 - Do not look inside this question booklet.
 - Do not start answering on the OMR answer sheet.

IMPORTANT INSTRUCTIONS TO CANDIDATES

- 1. This question booklet contains 75 (items) questions and each question will have one statement and four answers. (Four different options / responses.)
- 2. After the 3rd Bell is rung at 10.30 a.m., remove the paper seal / polythene bag of this question booklet and check that this booklet does not have any unprinted or torn or missing pages or items etc., if so, get it replaced by a complete test booklet. Read each item and start answering on the OMR answer sheet.
- 3. During the subsequent 120 minutes:
 - Read each question (item) carefully.
 - Choose one correct answer from out of the four available responses (options / choices) given under each question / item. In case you feel that there is more than one correct response, mark the response which you consider the best. In any case, choose only one response for each item.
 - Completely darken / shade the relevant circle with a BLUE OR BLACK INK BALL POINT PEN against the question number on the OMR answer sheet.
- 4. Use the space provided on each page of the question booklet for Rough Work. Do not use the OMR answer sheet for the same.
- After the last Bell is rung at 12.30 pm, stop marking on the OMR answer sheet and affix your left hand thumb impression on the OMR answer sheet as per the instructions.
- 6. Hand over the OMR ANSWER SHEET to the room invigilator as it is.
- 7. After separating the top sheet, the invigilator will return the bottom sheet replica (Candidate's copy) to you to carry home for self-evaluation.
- 8. Preserve the replica of the OMR answer sheet for a minimum period of ONE year.
- 9. Only Non-programmable calculators are allowed.

Marks Distribution

PART-1 : 50 QUESTIONS CARRY ONE MARK EACH (1 TO 50) PART-2 : 25 OUESTIONS CARRY TWO MARKS EACH (51 TO 75)

СН-АЗ

[Turn Over

CHEMICAL ENGINEERING

PART - 1

Each question carries one mark.

 $(50\times1=50)$

1.	Press	sure drop in a packed bed for turbu	lent flo	ow is given by equation.						
	(A)	Kozeny – Karman	(B)	Blake – Plummer						
	(C)	Leva's	(D)	Hagen – Poiseulle's						
2.	Web	er number is the ratio of inertial fo	rce to	force.						
	(A)	Surface tension	(B)	Gravity						
	(C)	Viscous	(D)	Elastic						
3.	For 6	efficient grinding, ball mills must l	oe oper	ated						
	(A) at a speed more than the critical speed									
	(B)	(B) at a speed less than the critical speed								
	(C)	at a speed equal to the critical spe	eed							
	(D)	with minimum possible small ba	lls							
4.	Ribbon blenders are exclusively meant for									
	(A)	Blending miscible liquids	(B)	Non flowing powder & their pastes						
	(C)	Batch mixing	(D)	Continuous mixing						
5.	The function of gypsum addition during cement making is to									
	(A)	Increase the density of cement	(B)	Decrease the cement setting rate						
	(C)	Both (A) & (B)	(D)	Neither (A) nor (B)						
6.		is produced using molas	ses.							
	(A)	Benzol	(B)	Dimethyl ether						
	(C)	Methyl alcohol	(D)	Ethyl alcohol						
7.	Ultr	afine grinders operates principally	by							
	(A)	Slow compression	(B)	Impact						
	(C)	Attrition	(D)	Cutting						

8.	Che	mical name of Soda ash is		
	(A)	Sodium bicarbonate	(B)	Sodium thiosulphate
	(C)	Potassium carbonate	(D)	None of these
		e e		
9.	Case	cade control means		
	(A)	Feed forward control	(B)	More than one feedback loop
	(C)	On – off control	(D)	One feedback loop
10.		multicomponent multiple phases perature the of each compo		e in equilibrium at the same pressure and nust be same in all phases.
	(A)	Chemical potential	(B)	Fugacity
	(C)	Both (A) & (B)	(D)	Neither (A) nor (B)
11.	(A) (B) (C) (D)	Able system is the one For which the output response is be Which exhibits an unbounded response which satisfies the conditions for None of these	oonse (to a bounded input o problem
12.	In a	shell and tube heat exchanger, the variable.	outlet	temperature of heating / cooling fluid is the
	(A)	Load	(B)	Manipulated
	(C)	Controlled	(D)	None of these
13.	From	collision theory, the reaction rate of	consta	nt is proportional to
	(A)	$\exp(-E/RT)$	(B)	$\exp(-E/2RT)$
	(C)	T	(D)	$T^{m} \exp(-E/RT)$

14.	A space time of 3 hours for a flow reactor means that								
	(A) the time required to process one reactor volume of feed is 3 hours								
	(B) three reactor volumes of feed can be processed every hour								
	(C)	it takes three hours to dump the	entire vo	olume of the reactor with feed					
	(D)	conversion is cent percent after t	three ho	urs					
15.	Whe	When the damping coefficient is unity, the system is							
	(A)	Overdamped	(B)	Criticallydamped					
	(C)	Underdamped	(D)	Highly fluctuating					
16.	The	purpose of nitriding the steel is to							
	(A)	Harden its surface	(B)	Soften its surface					
	(C)	Improve its reliability	(D)	None of these					
17.	18/8	steel is a/an stainles	s steel.						
	(A)	Austenitic	(B)	Ferritic					
	(C)	Martensitic	(D)	None of these					
18.	The calc	depreciation during the year 'ulation is calculated by multiplyin	'n', in ng a fixe	declining balance method of depreciation d percentage 'N' to the					
	(A)	Initial cost							
	(B)	Book value at the end of $(n-1)$	th year						
	(C)	Depreciation during the $(n-1)t$	h year						
	(D)	Difference between initial cost a	and salv	age value					
19.	Entr	opy change in case of reversible a	adiabatio	e process is					
	(A)	minimum	(B)	zero					
	(C)	maximum	(D)	indeterminate					
		Space	For Rou	ıgh Work					

A-3

20.	DIC	eak – even point is the point of it	nersecu	on oi
	(A)	Fixed cost and total cost	(B)	Total cost & sales revenue
	(C)	Fixed cost & sales revenue	(D)	None of these
21.	'Six	tenth factor' rule is used for estin	nating	
	(A)	Equipment cost by scaling	(B)	Equipment installation cost
	(C)	Cost of piping	(D)	Cost of utilities
22.		exit age distribution curve E(t) f	or an id	eal CSTR with the average residence time,
	(A)	$e^{-t/\tau}$	(B)	$e^{-t/ au}$ / $ au$
	(C)	$1 - e^{-t/\tau}$	(D)	$1-(e^{-t/\tau}/\tau)$
23.		number of plug flow reactors in version as one plug flow reactor of		with a total volume 'V' gives the same
	(A)	V / n	(B)	V
	(C)	V . n	(D)	I/V
24.	Cast	iron has very high		
	(A)	Compressive strength	(B)	Ductility
	(C)	Shock resistance	(D)	Resistance to brittleness
25.	For a	a mixed flow reactor operating at	steady s	tate, the rate of reaction is given by
	(A)	$F_{AO}/V - d C_A/dt$	(B)	$F_{AO}/V + d C_A/dt$
	(C)	F_{AO} . X_A / V	(D)	- d C _A / dt
26.				em is unstable, if the open loop frequency gunity at frequency for which phase lag is
	(A)	0°	(B)	45°
	(C)	90°	(D)	180°
		Space	For Rou	gh Work

27.	ideal	pressibility factor of a real gas is t gas law. As the pressure of the baches	he rat gas	io of the actual volume to that predicted by approaches zero, the compressibility factor
	(A)	∞	(B)	0
	(C)	1	(D)	. 0.24
28.	How	many phases are present at eutection	e poin	t ?
	(A)	1	(B)	2
	(C)	3	(D)	None of these
29.	A va	pour whose partial pressure is lessvapour.	than	its equilibrium vapour pressure is called the
	(A)	Saturated	(B) ,	Super heated
	(C)	Unsaturated	(D)	Dry gaseous
30.	Four	ier's law applies to the heat transfe	r by	
	(A)	Convection	(B)	Radiation
	(C)	Conduction	(D)	All (A), (B) & (C)
31.	Foul	ing factor		
	(A)	is a dimensionless quantity		
	(B)	does not provide a safety factor for	or desi	gn
	(C)	accounts for additional resistance	to he	at flow
	(D)	None of these		
32.	Floc	oding in a vapour liquid contacting ugh a tray is the liquid hea	equip	ment occurs in a tray, when the pressure drop ilable in the down comer.
	(A)	less than	(B)	more than
	(C)	same as	(D)	very much less
		Space F	or Ro	ugh Work

33.	Mill	c is usually dried in a	dryer.						
	(A)	Freeze	(B)	Spray					
	(C)	Tray	(D)	Rotary					
34.	Whi	ch of the following is used to de	colourise	yellow glycerine ?					
	(A)	Silica gel	(B)	Alumina					
	(C)	Fuller's earth	(D)	Activated carbon					
35.	For	an ideal black body							
	(A)	Absorptivity = 1	(B)	Reflectivity = 1					
	(C)	Emissivity = 0	(D)	Transmissivity = 1					
36.	25 p	ercent cut segmented baffle mea	ns that the	e baffle					
	(A)	Height is 75% of the I.D. of the	e shell						
	(B)	Height is 25% of the I.D. of the	shell						
	(C)	Spacing is 75% of its height							
	(D)	Width is 25% of its height							
37.	A pi	A pipe is defined as hydraulically smooth if the friction factor							
	(A) is not a function of Reynolds number								
	(B) for a given Reynolds number remains constant even on further smoothening of the pipe								
	(C)	is zero irrespective of the Reyn	olds num	ber					
	(D)	None of these							
38.	Third	I law of thermodynamics is conc	erned wit	th the					
	(A)	Value of absolute entropy	(B)	Energy transfer					
	(C)	Direction of energy transfer	(D)	None of these					

<i>3</i> 9.	Leid	en frost point is a term concerned v	vith th	e					
	(A)	Condensation of the saturated vap	our or	a cold surface					
	(B)	Concentration of a corrosive solut	tion by	v evaporation					
	(C)	Heat transfer between two highly	viscou	ıs liquids					
	(D)	Boiling of a liquid on a hot surfac	e						
40.	Gras	hoff number is defined as the ratio	of the						
	(A)	Buoyancy to inertial forces							
	(B)	Buoyancy to viscous forces							
	(C)	Inertial to viscous forces							
	(D)	Buoyancy to surface tension force	es						
41.	In a distillation column, with increase in the reflux ratio, the heat removed in the cooler								
	(A)	Increases	(B)	Decreases					
	(C)	Remains unaffected	(D)	Heat required in reboiler decreases					
42.	The coefficient of discharge of an orifice is usually								
	(A)	0.42	(B)	0.62					
	(C)	0.82	(D)	0.98					
43.		the same terminal conditions and value as compared to that in a gate value		ze, the pressure drop in a fully opened globe					
	(A)	more	(B)	less					
	(C)	equal	(D)	depends on viscosity of the fluid					
44.	With	increase in the capacity of screens	, the s	creen effectiveness					
	(A)	Remain unchanged	(B)	Increases					
	(C)	Decreases	(D)	Decreases exponentially					

		Space Fe	or Rou	igh Work
	(D)	Cannot be predicted from above in	nform	ation
	(C)	Remains constant		
	(B)	Decreases		
	(A)	Increases		
50.	As tl	he reflux ratio increases, the slope of	of the o	operating line for rectifying section.
	(C)	Absorption	(D)	None of these
	(A)	Distillation	(B)	Solvent extraction
49.				selectivity is an important parameter ?
	(D)	Coefficient of thermal expansion		
	(C)	Work done under isothermal cond	ition	
	(B)	Work done under adiabatic condit		
	(A)	Compressibility	_	
48.		expression nRT In (P1/P2) is for th	e	
	(C)	Alkylation	(D)	Denyuration
	(A)	Dehydrogenation Alloylation	(B) (D)	Dehydration
47.	•	ene is produced from ethyl benzene	-	e process of Oxidation
4	~			
	(D)	Both (B) & (C)		
	(C)	Filtration pressure rises suddenly		
	(B)	Liquor stops flowing out to the dis	scharg	ge
	(A)	Cake becomes very dense	,	
46.	Filtra	ation should be stopped in a filter p	ress, i	${f f}$
	(D)	Pseudo critical pressure to pressure	e	
	(C)	Pressure to pseudo critical pressur	e	
	(B)	Critical pressure to pressure		
	(A)	Pressure to critical pressure		
45.	Redu	uced pressure of a gas is the ratio of	its	

51.		initial - 1) / (2S			of	the	unit	step	response	of	the	transfer	function
	(A)						(B)	1/2					
	(C)	4					(D)	2					
	` /												
52.	volu gas i	me in an s 21 J/me	insulate	ed cont	ainer	. If t	he spec ure wil	cific h l be	expands re- eat capacit				
		35 K					(B)						
	(C)	274 K					(D)	154	4 K				
53.	The	approxin	nate sur	face ter	nper	ature	(K) is			22.6	8 KW	//m ² .	
	(Ste	fan – Bol	tzman c	onstan	t=5	.67 ×	10 ⁻⁸ w	/m ² K	⁽⁴)				
	(A)	1000					(B)	72′	7				
	(C)	800					(D)	120	00				
54.	function function (A)	tion 1/2S tion 1 / τ controlled Overda	S. The of S. Will say the second of the seco	control hen a st le will c esponse	ler p tep c exhil	ropos hange	sed to be in set	point Un	ed is an inted in an intended in an intended is applied derdamped	tegra to su I resp	l con	troller wit	h transfer
	(C)	Undam	ped resp	onse			(D)	Un	stable resp	onse			
55.	5. For the reversible reaction A ↔ 2B, if the equilibrium constant K is 0.05 mol/litre, starting from 2 moles of A and zero moles of B, how many moles of B will be formed at equilibrium?						re, starting formed at						
	(A)	0.253					(B)	0.3	38				
	(C)	0.152					(D)	0.6	37				
<u>. </u>	Space For Rough Work												
						pace	_ VI 180	wen ,				•	

56. The following half life data are available for the irreversible liquid phase reaction $A \rightarrow$ products:

Initial concentration k mol / m ³	Half – life
2	2
8	1

The overall order of reaction is

(A) 0.5

(B)

(C) 1.5

(D) 2

57. A machine has an initial value of ₹ 5000, service life 5 years and final salvage value of ₹ 1000. The annual depreciation cost by straight line method is ₹.

(A) 300

(B) 600

(C) 800

(D) 1000

58. Due to a 20% drop in the product selling price the pay back period of a new plant increased to 1.5 times that estimated initially the production cost and the production rate remaining unchanged. If the production cost is Cp and the zero selling price is Cs then Cp / Cs is

(A) 0.2

 $(B) \quad 0.4$

(C) 0.5

(D) 0.6

59. A wall has two layers of materials A and B; each made of a different material. Both the layers have the same thickness. The thermal conductivity of material. A is twice that of B. Under the equilibrium, the temperature difference across the wall is 36 °C. The temperature difference across the layer A is _____ °C.

(A) 6

(B) 12

(C) 18

(D) 24

60.	In a	solution containing 0.30 k mol of s	olute	and 600 kg of solvent, the molality is
	(A)	0.5	(B)	0.6
	(C)	2	(D)	1
61.	In a	binary distillation column, if the	feed c	contains 40 mole % vapour, the q – line will
	(A)	1.5	(B)	-0.6
	(C)	- 1.5	(D)	0.6
62.	The	accumulation in a steady state commol of oxygen thereby producing 1	nbusti k mol	ion process, burning 1 k mol of carbon with of carbon dioxide, is k mol.
	(A)	1	(B)	0
	(C)	16	(D)	44
63.		a current carrying wire of 20 mm d distribution occurs when the thickr		er exposed to air (h = $25 \text{ w/m}^2 \text{ K}$), maximum f insulation (k = 0.5 w/mK), is
	(A)	20 mm	(B)	10 mm
	(C)	1.5 mm	(D)	0 mm
64.	The	unit impulse response of a unit feed	lback	control system is given by
	(A)	$(S+1)/(S+2)^2$	(B)	$(2S+1)/S^2$
	(C)	$(S+1)/(S+1)^2$	(D)	$(S+1)/S^2$
65.	For t	the gaseous reaction $2A \rightarrow B$ wher with on inerts, the expansion factor	e the	feed consists of 50 mol % of A and 50 mole
	(A)	1	(B)	- 0.5
	(C)	- 0.25	(D)	0
		Space Fo	or Rou	ıgh Work

66. The Newton Raphson method is used to solve the equation $(x-1)^2 + x - 3 = 0$.

The method will fail in the very first iteration if the initial guess is

(A) Zero

(B) 0.5

(C) 1

(D) 3

67. The general solution of the differential equation $d^2y/dx^2 - dy/dx - 6y = 0$ with C_1 and C_2 as constants of integration is

(A) $C_1 e^{-3x} + C_2 e^{-2x}$

(B) $C_1 e^{3x} + C_2 e^{-2x}$

(C) $C_1 e^{3x} + C_2 e^{2x}$

(D) $C_1 e^{-3x} - C_2 e^{2x}$

68. A liquid mixture of benzene and toluene is in equilibrium with its vapour at 101 KPa and 373 K. The vapour pressures of benzene and toluene at 373 K are 156 and 63 KPa respectively. Assuming that the system obeys Raoult's law, the mole fraction of benzene in the liquid phase is

(A) 0.65

(B) 0.04

(C) 0.065

(D) 0.41

69. What is the Laplace transform of sin t?

(A) $1/(S^2+1)$

(B) $S/(1+S^2)$

(C) $1/(S^2-1)$

(D) $S/(S^2-1)$

70. 1 kcal / kg. °C is equivalent to ______ BTU / lb. °F.

(A) 1

(B) 2.42

(C) 4.97

(D) None of these

71. A flue gas produced on burning furnace oil contain 0.15 gm mole of CO₂, 0.05 g mol of oxygen & 0.80 gm mole of N₂. What is its molecular weight?

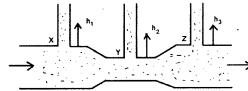
(A) 28.6

(B) 30.0

(C) 30.6

(D) 32.6

72. Hot water (0.01 m³/min) enters the tube side of a counter current shell and tube heat exchanger at 80 °C and leaves at 50 °C. Cold oil (0.05 m³/min) of density 800 kg/m³ and specific heat of 2 kJ/kg. K enters at 20 °C. The log mean temperature difference in °C is approximately


(A) 32

(B) 37

(C) 45

(D) 50

73. For flow through a venturi at a particular discharge, the correct relationships among heads at points X, Y and Z are

(A) $h_1 > h_2 < h_3$

(B) $h_1 > h_2 > h_3$

(C) $h_2 < h_1 < h_3$

(D) $h_1 \le h_2 \le h_3$

74. On mixing 56 gm of CaO with 63 gm of HNO₃, the amount of Ca(NO₃)₂ formed is gm.

(A) 82

(B) 164

(C) 41

(D) 8.2

75. A gas mixture contains 6 moles of H₂ and 2 moles of N₂. If the total pressure of the gaseous mixture is 4 kgf/cm², then the partial pressure of N₂ in the mixture will be kgf/cm².

 $\overline{(A)}$ 1

(B) 2

(C) 4

(D) 8