MCA SET I

Q1. tan 1° tan 2° tan 3° tan 4°...tan 89° is equal to

- (A) 1
- **(B)** 0
- (C) ∞
- (D) ¹/₂

Q2. The minimum value of $3\cos x + 4\sin x + 5$ is

- (A) 5
- (B) 9
- (C) 7
- (D) 0

Q3. The equation $\sin x \cos x = 2$ has

- (A) One solution
- (B) Two solutions
- (C) Infinite solutions
- (D) No solution

Q4. If the sides of the triangle be 6, 10, and 14 then the triangle is:

- (A) Obtuse angled
- (B) Acute angled
- (C) Right angled
- (D) Equilateral

Q5. In a \triangle ABC, sin $A : \sin B : \sin C = 1: 2: 3$. If b = 4 cm, the perimeter of the triangle is

- (A) 6 cm
- (B) 24 cm
- (C) 12 cm
- (D) 8 cm

Q6. 1 + $cot^{2}(sin^{-1}x)$ is equal to

(A) $\frac{1}{2x}$

(B) *x*²

(C) $\frac{1}{x^2}$

 $(D)\frac{2}{x}$

Q7. Angle of elevation of the sun when the shadow of the pole is $\sqrt{3}$ times the height of the pole is

(A) 60° (B) 30° (C) 45° (D) 15° If $a \times b =$

Q8. If $a \times b = b \times c \neq 0$ and $a + c \neq 0$, then

(A) $(a + c) \perp b$ (B) $(a + c) \parallel b$ (C) a + c = b(D) None of the above

Q9. If the normals at two points P and Q of a parabola $y^2 = 4ax$ intersect at a third point R on the curve then the product of the ordinates of P and Q is

(A) $4a^2$ (B) $2a^2$ (C) $-4a^2$ (D) $8a^2$

Q10. If retardation produced by air resistance if one tenth of the acceleration due to gravity the time to return from maximum height

(A) Decreases by 9%(B) Increases by 11%

(C) Decreases by 11%

(D) Increases by 9%

Q11. If the line y = 2x + k is a tangent to the curve $x^2 = 4y$ then k is equal to

- (A) 4 (B) 1/2 (C) -4
- (D) -1/2

Q12. The latus rectum of the hyperbola $9x^2 - 16y^2 - 18x - 32y - 151 = 0$ is

(A) 9/4

- (B) 9
- (C) 3/2
- (D) 9/2

Q13. The eccentricity of the ellipse $\frac{(x-1)^2}{9} + \frac{(y+1)^2}{25} = 1$ is

- (A) 4/5
- (B) 3/5
- (C) 5/4
- (D) Imaginary

Q14. The line $x \cos \alpha + y \sin \alpha = p$ will be a tangent to the conic $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ if

(A) $p^2 = a^2 \sin^2 \alpha + b^2 \cos^2 \alpha$ (B) $p^2 = a^2 + b^2$ (C) $p^2 = b^2 \sin^2 \alpha + a^2 \cos^2 \alpha$ (D) None of the above

Q15. Curve $xy = c^2$ is said to be

- (A) Parabola
- (B) Rectangular hyperbola
- (C) Hyperbola
- (D) Ellipse

Q16. If you want to kick a football to the maximum distance, the angle at which it should be kicked is (assuming no air resistance)

- (A) 45°
- (B) 90°
- (C) 30°
- (D) 60°

Q17. The area of the triangle formed by the lines joining the vertex of the parabola $x^2 = 12 y$ to the ends of its latus rectum is

(A) 12 sq. units
(B) 16 sq. units
(C) 18 sq. units
(D) 24 sq. units

Q18. If the vectors $3i + \lambda j + k$ and 2i - j + 8k are perpendicular then λ is

- (A) -14(B) 7(C) 14
- (D) 1/7

Q19. The time taken for a projectile thrown with a velocity v cm/s at an angle α with the horizontal to attain the maximum height is given by

(A)
$$\frac{v}{g}$$

(B) $\frac{v}{\sin \alpha}$
(C) $\frac{v \sin \alpha}{a}$

(D)
$$(v \sin \alpha) g$$

Q20. In a city 20% of the population travel by car, 50% travel by bus and 10% travels by both car and bus. Then, persons travelling by car or bus is

A. 80%B. 40%C. 60%

D. 70%

Ans (C)

Q21. If A = $\{2, 4, 5\}$ and B = $\{7, 8, 9\}$ the *n* (A × B) is equal to

(A) 6

(B) 9

(C) 3

(D) 0

Q22. In an exam, 70% of students passed in maths, 80% passed in physics, 75% passed in chemistry, 85% passed in Biology, and x % passed in all the four subjects. The minimum value of x is:

(A) 10
(B) 12
(C) 15
(D) None of the above

Q23. If A, B and C are any three sets then $A - (B \cup C)$ is equal to :

A. $(A - B) \cup (A - C)$ B. $(A - B) \cap (A - C)$ C. $(A - B) \cup C$ D. $(A - B) \cap C$

Q24. If a, b, c are in AP, then $\frac{(a-c)^2}{(b^2-4ac)}$ is equal to:

- A. 1
- B. 2
- C. 3

D. 4

Q25. The GM of the numbers 3, 3^2 , 3^3 3^n is :

A. $3^{2/n}$ B. $3^{(n+1)/2}$ C. $3^{n/2}$ D. $3^{(n-1)/2}$

Q26. If $a^2 + ab^2 + 16c^2 = 2(3ab + 6bc + 4ac)$ where a, b, c are non zero numbers. Then a, b, c are said to be in:

(A) AP

(B) GP

(C) HP

(D) None of the above

Q27. If the arithmetic, geometric and harmonic means between two positive real numbers be A, G, and H, respectively then

(A) $A^2 = GH$ (B) $H^2 = AG$ (C) G = AH(D) $G^2 = AH$

Q28. If $log_a x$, $log_b x$, $log_c x$ be in HP then a, b, c are in :

- A. AP
- B. HP
- C. GP
- D. None of the above

Q29. The number of straight lines that can be formed by joining 20 points no three of which are in same straight line except 4 of them which are in the same line

- A. 183
- B. 186
- C. 197
- D. 185

Q30. Number of ways in which any four letters can be selected from the word CORGOO is :

- A. 15
- B. 11

C. 7

D. None of the above

Q31. The number of divisors of 9600 including 1 and 9600 are:

- A. 60
- B. 58
- C. 48
- D. 46

Q32. In how many ways can 5 keys be put in a ring?

A. $\frac{1}{2}4!$ B. $\frac{1}{2}5!$

- C. 4!
- D. 5!

Q33. Let 'X' be a family of sets and R be a relation on X defined by 'A is disjoint from B'. Then, R is :

- (A) Reflexive
- (B) Symmetric
- (C) Anti-symmetric
- (D) Transitive

Q34. R is a relation from $\{11, 12, 13\}$ to $\{8, 10, 12\}$ defined by y=x-3, then R⁻¹ is:

- A. {(8,11), (10,13)}
- B. {(11,18), (13,10)}
- C. {(10,13), (8,11)}
- D. None of the above

Q35. Let R be a reflexive relation on a set A and I be the identity relation on A. then,

- A. $R \subset I$
- B. $I \subset R$
- *C.* R = *I*
- D. None of the above

Q36. Let S be the set of all real numbers. Then, the relation $R = \{(a,b): 1 + ab > 0\}$ on S is :

- A. Reflexive and symmetric but not transitive
- B. Reflexive and transitive but not symmetric
- C. Symmetric, transitive but not reflexive
- D. Reflexive, transitive and symmetric

Q37. Let R & S be two non-void relations on a set A. Which of the following statements is false.

- A. R & S are transitive \Rightarrow R \cup S is transitive
- B. R & S are transitive \Rightarrow R \cap S is transitive
- C. R & S are symmetric \Rightarrow R \cup S is symmetric
- D. R & S are reflexive $\Rightarrow R \cap S$ is reflexive

Q38. Let a relation R be defined by R = { (4,5) , (1,4), (4,6), (7,6), (3,7) } then $R^{-1}o R$ is :

- A. {(1,1), (4,4), (4,7), (7,4), (7,7), (3,3)}
- B. {(1,1), (4,4), (7,7), (3,3)}
- C. {(1,5), (1,6), (3,6)}
- D. None of the above

Q39. Function f : R \rightarrow R, $f(x) = x^2 + x$ is :

- A. One-one onto
- B. One-one into
- C. Many-one onto
- D. Many-one into

Q40. Domain of $f(x) = \log |\log x|$ is:

- A. (0,∞)
- B. (1,∞)
- C. $(0, 1) \cup (1, \infty)$
- D. (-∞, 1)

Q41. The domain of definition of the function y(x) given by $2^{x} + 2^{y} = 2$ is :

- A. (0,1]
- B. [0,1]
- C. (-∞, 0]
- D. (-∞, 1)

Q42. Which of the following function is invertible

(A) $f(x) = 2^{x}$ (B) $f(x) = x^{3} - x$ (C) $f(x) = x^{2}$ (D) None of the above

Q43. Let $f: (2,3) \rightarrow (0,1)$ be defined by f(x) = x - [x], then $f^{-1}(x)$ equals

(A) x - 2(B) x + 1 (C) x - 1(D) x + 2

Q44. If a+ b+ c = 0, a $\neq 0$, a,b,c \in Q, then both the roots of the equation $ax^2 + bx + c = 0$ are:

- A. rational
- B. non-real
- C. irrational
- D. zero

Q45. A real root of an equation $log_4 \{ log_2 (\sqrt{(x+8)} - \sqrt{x}) \} = 0$ is :

- A. 1
- B. 2
- C. 3
- D. 4

Q46. For equation $3x^2 + px + 3 = 0$, p > 0, if one of the roots is square of the other, then p is equal to

- A. $\frac{1}{3}$
- B. 1
- C. 3
- D. $\frac{2}{3}$

Q47. The equation of motion of a vehicle is $s = t^2 - 2t$, where 't' is measured in hours and 's' in kilometres. When the distance travelled by the vehicle is 15 km, the velocity of the vehicle is :

- A. 2 km/h
- B. 4 km/h
- C. 6 km/h
- D. 8 km/h

Q48. The maximum value of $(\frac{1}{x})^x$ is :

- A. $(e)^{e}$ B. $(e)^{\frac{1}{e}}$ C. $(e)^{-e}$
- D. $\left(\frac{1}{a}\right)^e$

Q49. If $f(x) = x + \frac{1}{x}$, x > 0, then its greatest value is :

- A. -2
- B. 0

C. 3

D. None of the above

Q50. The sum of coefficients in the expansion of $(x + 2y + 3z)^8$ is :

- A. 3⁸
- B. 5⁸
- C. 6⁸
- D. 7⁸

Q51. If the coefficients of r^{th} term and $(r + 4)^{th}$ term are equal in the expansion of $(1 + x)^{20}$, then the value of 'r' will be

- A. 7
- B. 8
- C. 9
- D. 10

Q52. If $n \in N$ then $x^{2n-1} + y^{2n-1}$ is divisible by

A. x + yB. x - yC. $x^{2} + y^{2}$ D. $x^{2} + xy$

Q53. $\lim_{x\to 0} \left(\frac{x (e^x - 1)}{1 - \cos x}\right)$ is equal to A. 0 B. ∞ C. -2

D. 2

Q54. If $\lim_{x\to 0} kx \operatorname{cosec} x = \lim_{x\to 0} x \operatorname{cosec} kx$ then 'k' is equal to

- A. 1
- B. -1
- C. ±1
- D. ±2

Q55. The function $y = e^{-|x|}$ is

- A. Continuous and differentiable at x = 0
- B. Neither continuous nor differentiable at x = 0
- C. Continuous but not differentiable at x = 0
- D. Not continuous but differentiable at x = 0

Q56. If	A =	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 1\\1 \end{bmatrix}$ then A ⁿ is equal to :
	$\begin{bmatrix} 1 \\ 0 \\ m \end{bmatrix}$		
	$\begin{bmatrix}n\\0\end{bmatrix}$		
	$\begin{bmatrix} n \\ 0 \end{bmatrix}$		
D.	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	$\binom{1}{n}$	

Q57. If A and B are square matrices of the same order then,

- A. (AB)' = A' B'
 B. (AB)' = B'A'
 C. AB = 0; if |A| = 0 or |B| = 0
- D. AB = 0; if A = 1 or B = 1

Q58. The derivative of $\sin^{-1}\left(\frac{2x}{1+x^2}\right)$ with respect to $\cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$ is

- A. -1
- B. 1
- C. 2
- D. 4

Q59. the derivative of f (x) = x |x| is

- A. 2x
- B. -2x
- C. 2x²
- D. 2|x|

Q60. $\int \frac{dx}{e^x + e^{-x}}$ is equal to

A. $\tan^{-1}(e^{-x}) + C$ B. $\tan^{-1}(e^{x}) + C$ C. $\log (e^{x} - e^{-x}) + C$ D. $\log (e^{x^{2}} - e^{-x}) + C$ Q61. Value of $\int_{0}^{\frac{\pi}{2}} \frac{\sin x}{1 + \cos^{2} x} dx$ is A. $\frac{\pi}{2}$ B. $\frac{\pi}{4}$ C. $\frac{\pi}{3}$ D. $\frac{\pi}{6}$

Q62. Area bounded by the curve $y = x^3$, 'x' axis and ordinates x = 1 and x = 4 is

- A. 64 *m*²
- B. 27 m²
- C. $\frac{127}{4}m^2$
- D. $\frac{255}{4}m^2$

Q63. The order of the differential equation of the family of all the concentric circles centered at (h,k) is

- A. 1
- B. 2
- C. 3
- D. 4

Q64. The slope of a curve at any point is the reciprocal of twice the ordinate at the point and it passes through the point (4,3). The equation of curve is

A. $x^2 = y + 5$ B. $y^2 = x - 5$ C. $y^2 = x + 5$ D. $x^2 = y - 5$

Q65. The area of the triangle formed by the lines

7x - 2y + 10 = 0, 7x + 2y - 10 = 0, y + 2 = 0

- A. 8 sq. units
- B. 12 sq. units
- C. 14 sq. units
- D. None of these

Q66. The equation $(x + y)^2 = (x^2 + y^2) = 0$ represents

- A. Circle
- B. Two lines
- C. Two parallel lines
- D. Two mutually perpendicular lines

Q67. If the sum of the slopes of the lines represented by the equation $x^2 - 2xy \tan A - y^2 = 0$ be 4, then $\angle A$ is equal to :

- A. 0 degree
- B. 45 degree

C. 60 degree

D. $tan^{-1}(-2)$

Q68. Which the following is false ?

(A) $x^2(1+x) > 0 \Leftrightarrow x > -1$ and $x \neq 0$ (B) $x^3 + y^3 = 0 \Leftrightarrow x = y = 0$ (C) x = 3 and $y = 5 \Rightarrow 2x + 4y = 26$ (D) $x = \sqrt{16} \Rightarrow x^2 = 16$

Q69. Consider the statement : 'If it rains, the wind is blowing'. Which of the following statements does not express the same (with R as the statement that it is raining, and W as the statement that the wind is blowing, $R \Rightarrow W$) ?

- (A) A sufficient condition for rain is that the wind is blowing
- (B) A sufficient condition for the wind to blow is that it is raining
- (C) A necessary condition for rain is that the wind is blowing
- (D) If the wind is blowing, there will be no rain

Q70. In a group of 100 students, 25 study economics, 30 study political science and 5 study both subjects. How many students study neither economics nor political science?

(A) 45
(B) Unable to tell
(C) 55
(D) 50

Q71. Given the sets A = $\{2,3,4,5\}$, B = $\{1,2,3,4,7\}$ and C = $\{1,3,6,7\}$, which of the following statements is false?

 $\begin{array}{l} (A) (A \setminus B) \cap C = \{2\} \\ (B) A \cap C \subset B \\ (C) (A \cup B) \cap C = \{1,3,7\} \\ (D) 2 \in A \cap B \end{array}$

Q72. If $A = \begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & -1 \\ 5 & 2 \end{pmatrix}$, which of the following is false?

A.
$$A + B = \begin{pmatrix} 1 & 0 \\ 7 & 5 \end{pmatrix}$$

B. $A^2 = \begin{pmatrix} 0 & 1 \\ 4 & 9 \end{pmatrix}$
C. $AB = \begin{pmatrix} 5 & 2 \\ 17 & 4 \end{pmatrix}$
D. $3A - 4B = \begin{pmatrix} -4 & 7 \\ -14 & 1 \end{pmatrix}$

Q73. If A, B and C are n X n matrices, which of the following equalities is invalid? Note: D' is the transpose of D

(A) (ABC) ' = C' B' A' (B) (A + A)' = 2A' (C) ((AB)²)' = (B')² (A')² (D) (A + A + 2B)' = 2B' + 2A'

Q74. Which of the following statements is correct?

- A. A linear system with more equations than unknowns cannot have solutions
- B. It is possible to construct a linear system with exactly 5 different solutions
- C. Suppose A is n X n, x is n X 1, and Ax = 0 has only the trivial solution. Then Ax = b has solutions for any n x 1, vector b
- D. A linear system can only have an infinite number of solutions if there are more variables than equations

Q75. For which values of t does the following linear equation system have infinitely many solutions

$$tx + y = 1$$

 $6x + (t + 1) y = 3$
A. $t = -3$
B. $t = 2$
C. $t = 2$ and $t = -3$
D. The system does not have int

D. The system does not have infinitely many solutions for any value of t

Q76. Using Gaussian eliminations, the solutions of:x + y + z = c, x + 2y + az = 2c and x+2y + bz = 2 can be deduced from the augmented matrix

$$\begin{pmatrix} 1 & 1 & 1 & c \\ 0 & 1 & a-1 & c \\ 0 & 0 & b-a & 2(1-c) \end{pmatrix}$$

For which values of a, b, and c are there infinitely many solutions?

(A) If $a \neq b$ (B) If a = b and c= 1(C) If c = 1(D) Never

Q77. The straight line in \mathbb{R}^3 through the point (-1,3,3) pointing in the direction of the vector (1,2,3) hits the $x_1 x_2$ - plane at the point:

- A. (1, 3, 0)
- B. Never
- C. (2, -1, 0)
- D. (-2, 1, 0)
- Q78. Let *L* denote the line passing through the points (0,5) and (4,3). Which of the following points also lies on *L*?
 - A. (8, 0)
 - B. (12, -1)
 - C. (11,0)
 - D. (-4, 6)

Q79. Which of the following formulas is false (x, y, and z are positive)?

(A) $(\ln x)^4 = 4 \ln x$ (B) $\ln[(x + y)^{1/5} z^{2/3}]^{15} = 3 \ln(x + y) + \ln z$ (C) $\ln x^5 - \ln x^3 = 2 \ln x$ (D) $2 \ln \frac{x}{y} + \ln \frac{y^2}{x^2} = 0$

Q80. If $f(x) = \ln x$, x > 0, and $g(x) = 4 - x^2$, $x \in \mathbb{R}$ what is the range of f(g(x))?

(A) $(-\infty, \ln 4)$ (B) $(-\infty, 0)$ (C) $(0, \infty)$ (D) $(0, \ln 4)$

Q81. $\frac{(3^{100}+3^{98})}{(3^{100}-3^{98})}$	is equal to
A. 3 ¹⁹⁶	
B. 99	
C. $\frac{3+3}{3-3}$	
D. 5/4	

Q82. If x = a - b makes $x^2 - 2ax + m$ equal to 0, then m is

A. a + bB. $a^2 - b^2$ C. $a^2 + b^2$ D. a - b

Q83. Which of the following factorizations is incorrect?

A. $2a^2 - 5ab - 3b^2 = (2a + b) (a - 3b)$ B. $x^6 - y^6 = (x^3 + y^3)(x^3 - y^3)$ C. $25a^2 + 1 = (5a + 1)(5a - 1)$ D. $a - 2\sqrt{ab} + b = (\sqrt{a} - \sqrt{b})^2$

Q84. If $p \in (0,1)$, then:

A. p > 1/pB. $p^3 > p^2$ C. $p > \sqrt{p}$ D. $1/p > \sqrt{p}$

Q85. Which of the following statements is incorrect?

(A) $\sqrt{a^2} = |a|$ (B) $|a + b| \le |a| + |b|$ (C) $|a - b| \le |a| - |b|$ (D) $|a| - |b| \le |a + b|$ Q86. In a sports league where no drawn games are possible, a team had 10 more wins than twice its losses. It played a total of 52 matches. How many did it lose?

(A) 12

- (B) 10
- (C) 14
- (D)16

Q87. The solution (s) of the equation $\frac{x^2-3x-10}{\sqrt{x-5}} = 0$ is / are :

- (A) Only x = 5
- (B) No solution
- (C) Only x= -2
- (D) x = -2 and x = 5

Q88. Solving $\frac{1}{p} + \frac{1}{q} = \frac{1}{T}$ for 'q' you get :

$$(A) \frac{pT}{p+T}$$

$$(B) T - p$$

$$(C) \frac{pT}{p-T}$$

$$(D) \frac{1}{T} - \frac{1}{p}$$

Q89. If $z = F(x, y) = x^2 - y^3$ and $x = t^2, y = 1 - t$, then $\left\{\frac{dz}{dt}\right\}_{t=0}$ is : (A) 3 (B) 0 (C) -3 (D) 2

Q90. The function $z = xy^2 - y^3 + 2x^2y$ satisfies the equation xz'x + yz'x = kz for k =

(A)2 (B)3 (C)4 (D)For no value of k

Q91. Which of the following statements about systems of equations is correct?

- (A) Three equations with two unknowns never have a solution.
- (B) Three linear equations with three unknowns never have exactly two solutions.
- (C) Three linear equations with three unknowns always have a unique solution
- (D) Two equations with three unknowns always have a solution

Q92. Ogives for more than type and less than type distributions intersect at:

- (A) mean
- (B) median
- (C) mode
- (D) origin

Q93. If A and A^{C} are complementary events in a sample space S, then :

- (A) $P(A) + P(A^{C}) = 0$
- (B) $P(A) P(A^{C}) = 0$
- (C) $P(A) + P(A^{C}) = 1$
- (D) $P(A) P(A^{C}) = 1$
- Q94. If mean of n observations is 'a'. If one observation 'b' is added, mean continues to remain 'a', then the value of 'b' is:
 - (A) 0
 - **(B)** 1
 - (C) n
 - (D) a
- Q95. Let there be two data sets I and II of size 80 and 20 respectively. The combined arithmetic mean of the two data sets is 500. If the arithmetic mean of the data set I is 520, then the arithmetic mean of data set II is :
 - (A) 480
 - (B) 490

(C) 450

(D) 420

- Q96. The mean of 50 observation is 40 and standard deviation (s.d.) 8. If 4 is added to each observation, then the new mean and standard deviation (s.d.) are :
 - (A) mean = 40, s.d. = 8
 - (B) mean = 44, s.d. = 12
 - (C) mean = 44, s.d. = 8
 - (D) mean = 40, s.d. = 12

Q97. Let f (x) = $\int_{1}^{x} \sqrt{2 - t^2 dt}$ then real roots of the equation x2 -f' (x) = 0 are

A. ± 1 B. $\pm \frac{1}{\sqrt{2}}$ C. $\pm \frac{1}{2}$ D. 0 and 1

Q98. Which of the following is false?

(A) If A = $(1 + p/100)^t$, then p = $100(A^{1/t} - 1)$ (B) $\sqrt{2x + 3} = x$ has only the solution x = 3 (C) $X^2 - rx - \delta(r + \delta) = 0$ has the solutions x = $-\delta$ and x = r + δ (D) $(p^{1/3}+1) = 27$ implies p = $\pm \delta$

Q99. Which of the following functions are not homogenous of any degree?

(A)
$$5(x+y)^5 + 5$$

(B) $e^{\frac{x^2}{y^2}}$
(C) $\frac{x+y}{x^2+y^2}$
(D) $3x^2y - y^3$

Q100. If $4^{40} + 4^{40} = x$, then x is:

- A. 82
- B. 80
- C. 81
- D. 160