CHENNAI Mathematical Institute

Graduate Programme in Mathematics

Entrance Examination, 2010

Part A

State whether True or False and give brief reasons in the sheets provided (e.g., if you feel that a statement is "False" then give a counter-example). Marks will be given only when reasons are provided.

- 1. Suppose A is an $m \times n$ matrix, V an $m \times 1$ matrix, with both A and V having rational entries. If the equation AX = V has a solution in \mathbb{R}^n , then the equation has a solution with rational entries. (Here and in Question 5 below of Part A, \mathbb{R}^n is identified with the space of $n \times 1$ real matrices.)
- 2. A closed and bounded subset of a complete metric space is compact.
- 3. Let p be a prime number. If P is a p-Sylow subgroup of some finite group G, then for every subgroup H of G, $H \cap P$ is a p-Sylow subgroup of H.
- 4. There exists a real 3×3 orthogonal matrix with only non-zero entries.
- 5. A 5×5 real matrix has an eigenvector in \mathbb{R}^5 .
- 6. A continuous function on $\mathbb{Q} \cap [0,1]$ can be extended to a continuous function on [0,1].
- 7. Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function. Then f'(x) is continuous.
- 8. There is a continuous onto function from the unit sphere in \mathbb{R}^3 to the complex plane \mathbb{C} .
- 9. $f: \mathbb{C} \to \mathbb{C}$ is an entire function such that the function g(z) given by $g(z) = f(\frac{1}{z})$ has a pole at 0. Then f is a surjective map.
- 10. Every finite group of order 17 is abelian.
- 11. Let $n \ge 2$ be an integer. Given an integer k there exists an $n \times n$ matrix A with integer entries such that det A = k and the first row of A is (1, 2, ..., n).
- 12. There is a finite Galois extension of \mathbb{R} whose Galois group is nonabelian.

13. There is a non-constant continuous function from the open unit disc

$$D = \{ z \in \mathbb{C} \mid |z| < 1 \}$$

to $\mathbb R$ which takes only irrational values.

14. There is a field of order 121.

Part B

Answer all questions.

- 1. Let α , β be two complex numbers with $\beta \neq 0$, and f(z) a polynomial function on \mathbb{C} such that $f(z) = \alpha$ whenever $z^5 = \beta$. What can you say about the degree of the polynomial f(z)?
- 2. Let $f, g: \mathbb{Z}/5\mathbb{Z} \to S_5$ be two non-trivial group homomorphisms. Show that there is a $\sigma \in S_5$ such that $f(x) = \sigma g(x)\sigma^{-1}$, for every $x \in \mathbb{Z}/5\mathbb{Z}$.
- 3. Suppose f is continuous on $[0, \infty)$, differentiable on $(0, \infty)$ and $f(0) \ge 0$. Suppose $f'(x) \ge f(x)$ for all $x \in (0, \infty)$. Show that $f(x) \ge 0$ for all $x \in (0, \infty)$.
- 4. A linear transformation $T: \mathbb{R}^8 \to \mathbb{R}^8$ is defined on the standard basis e_1, \ldots, e_8 by

$$Te_j = e_{j+1}$$
 $j = 1, ..., 5$
 $Te_6 = e_7$
 $Te_7 = e_6$
 $Te_8 = e_2 + e_4 + e_6 + e_8.$

What is the nullity of T?

- 5. If f and g are continuous functions on [0, 1] satisfying $f(x) \ge g(x)$ for every $0 \le x \le 1$, and if $\int_0^1 f(x) dx = \int_0^1 g(x) dx$, then show that f = g.
- 6. Let $\{a_n\}$ and $\{b_n\}$ be sequences of complex numbers such that each a_n is non-zero, $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = 0$, and such that for every natural number k,

$$\lim_{n \to \infty} \frac{b_n}{a_n^k} = 0.$$

Suppose f is an analytic function on a connected open subset U of \mathbb{C} which contains 0 and all the a_n . Show that if $f(a_n) = b_n$ for every natural number n, then $b_n = 0$ for every natural number n.

7. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be an orthogonal transformation such that det T = 1 and T is not the identity linear transformation. Let $S \subset \mathbb{R}^3$ be the unit sphere, i.e.,

$$S = \{(x, y, z) \mid x^2 + y^2 + z^2 = 1\}.$$

Show that T fixes exactly two points on S.

8. Compute

$$\int_0^\infty \frac{x^{1/3}}{1+x^2} \, dx.$$

9. Let $f(x) = x^n + a_{n-1}x^{n-1} + \dots + a_0$ be a polynomial with integer coefficients and whose degree is at least 2. Suppose each a_i $(0 \le i \le n-1)$ is of the form

$$a_i = \pm \frac{17!}{r!(17-r)!}$$

with $1 \le r \le 16$. Show that f(m) is not equal to zero for any integer m.

10. Suppose $\varphi = (\varphi_2, \ldots, \varphi_n) \colon \mathbb{R}^n \to \mathbb{R}^{n-1}$ is a C^2 function, i.e. all second order partial derivatives of the φ_i exist and are continuous. Show that the symbolic determinant

$$\begin{vmatrix} \frac{\partial}{\partial x_1} & \frac{\partial \varphi_2}{\partial x_1} & \cdots & \frac{\partial \varphi_n}{\partial x_1} \\ \vdots & \vdots & & \vdots \\ \frac{\partial}{\partial x_n} & \frac{\partial \varphi_2}{\partial x_n} & \cdots & \frac{\partial \varphi_n}{\partial x_n} \end{vmatrix}$$

vanishes indentically.