CHENNAI Mathematical Institute

Graduate Programme in Mathematics

Entrance Examination, 2010

Part A
State whether True or False and give brief reasons in the sheets provided (e.g., if you feel that a statement is "False" then give a counter-example). Marks will be given only when reasons are provided.

1. Suppose A is an $m \times n$ matrix, V an $m \times 1$ matrix, with both A and V having rational entries. If the equation $A X=V$ has a solution in \mathbb{R}^{n}, then the equation has a solution with rational entries. (Here and in Question 5 below of Part A, \mathbb{R}^{n} is identified with the space of $n \times 1$ real matrices.)
2. A closed and bounded subset of a complete metric space is compact.
3. Let p be a prime number. If P is a p-Sylow subgroup of some finite group G, then for every subgroup H of $G, H \cap P$ is a p-Sylow subgroup of H.
4. There exists a real 3×3 orthogonal matrix with only non-zero entries.
5. A 5×5 real matrix has an eigenvector in \mathbb{R}^{5}.
6. A continuous function on $\mathbb{Q} \cap[0,1]$ can be extended to a continuous function on $[0,1]$.
7. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function. Then $f^{\prime}(x)$ is continuous.
8. There is a continuous onto function from the unit sphere in \mathbb{R}^{3} to the complex plane \mathbb{C}.
9. $f: \mathbb{C} \rightarrow \mathbb{C}$ is an entire function such that the function $g(z)$ given by $g(z)=f\left(\frac{1}{z}\right)$ has a pole at 0 . Then f is a surjective map.
10. Every finite group of order 17 is abelian.
11. Let $n \geq 2$ be an integer. Given an integer k there exists an $n \times n$ matrix A with integer entries such that $\operatorname{det} A=k$ and the first row of A is $(1,2, \ldots, n)$.
12. There is a finite Galois extension of \mathbb{R} whose Galois group is nonabelian.
13. There is a non-constant continuous function from the open unit disc

$$
D=\{z \in \mathbb{C}| | z \mid<1\}
$$

to \mathbb{R} which takes only irrational values.
14. There is a field of order 121.

Part B

Answer all questions.

1. Let α, β be two complex numbers with $\beta \neq 0$, and $f(z)$ a polynomial function on \mathbb{C} such that $f(z)=\alpha$ whenever $z^{5}=\beta$. What can you say about the degree of the polynomial $f(z)$?
2. Let $f, g: \mathbb{Z} / 5 \mathbb{Z} \rightarrow S_{5}$ be two non-trivial group homomorphisms. Show that there is a $\sigma \in S_{5}$ such that $f(x)=\sigma g(x) \sigma^{-1}$, for every $x \in \mathbb{Z} / 5 \mathbb{Z}$.
3. Suppose f is continuous on $[0, \infty)$, differentiable on $(0, \infty)$ and $f(0) \geq 0$. Suppose $f^{\prime}(x) \geq f(x)$ for all $x \in(0, \infty)$. Show that $f(x) \geq 0$ for all $x \in(0, \infty)$.
4. A linear transformation $T: \mathbb{R}^{8} \rightarrow \mathbb{R}^{8}$ is defined on the standard basis e_{1}, \ldots, e_{8} by

$$
\begin{aligned}
& T e_{j}=e_{j+1} \quad j=1, \ldots, 5 \\
& T e_{6}=e_{7} \\
& T e_{7}=e_{6} \\
& T e_{8}=e_{2}+e_{4}+e_{6}+e_{8} .
\end{aligned}
$$

What is the nullity of T ?
5. If f and g are continuous functions on $[0,1]$ satisfying $f(x) \geq g(x)$ for every $0 \leq x \leq 1$, and if $\int_{0}^{1} f(x) d x=\int_{0}^{1} g(x) d x$, then show that $f=g$.
6. Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be sequences of complex numbers such that each a_{n} is non-zero, $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}=0$, and such that for every natural number k,

$$
\lim _{n \rightarrow \infty} \frac{b_{n}}{a_{n}^{k}}=0
$$

Suppose f is an analytic function on a connected open subset U of \mathbb{C} which contains 0 and all the a_{n}. Show that if $f\left(a_{n}\right)=b_{n}$ for every natural number n, then $b_{n}=0$ for every natural number n.
7. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be an orthogonal transformation such that $\operatorname{det} T=1$ and T is not the identity linear transformation. Let $S \subset \mathbb{R}^{3}$ be the unit sphere, i.e.,

$$
S=\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2}=1\right\} .
$$

Show that T fixes exactly two points on S.
8. Compute

$$
\int_{0}^{\infty} \frac{x^{1 / 3}}{1+x^{2}} d x
$$

9. Let $f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$ be a polynomial with integer coefficients and whose degree is at least 2 . Suppose each $a_{i}(0 \leq i \leq n-1)$ is of the form

$$
a_{i}= \pm \frac{17!}{r!(17-r)!}
$$

with $1 \leq r \leq 16$. Show that $f(m)$ is not equal to zero for any integer m.
10. Suppose $\varphi=\left(\varphi_{2}, \ldots, \varphi_{n}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-1}$ is a C^{2} function, i.e. all second order partial derivatives of the φ_{i} exist and are continuous. Show that the symbolic determinant

$$
\left|\begin{array}{cccc}
\frac{\partial}{\partial x_{1}} & \frac{\partial \varphi_{2}}{\partial x_{1}} & \ldots & \frac{\partial \varphi_{n}}{\partial x_{1}} \\
\vdots & \vdots & & \vdots \\
\frac{\partial}{\partial x_{n}} & \frac{\partial \varphi_{2}}{\partial x_{n}} & \cdots & \frac{\partial \varphi_{n}}{\partial x_{n}}
\end{array}\right|
$$

vanishes indentically.

