You are here: Home > Manipal Entrance Test
All posts from

Manipal MU OET 2016 Syllabus Online Entrance Test : University

Organisation : Manipal University
Announcement : Syllabus
Announcement : MU-OET 2016 Manipal Online Entrance Test

Want to comment on this post?
Go to bottom of this page.

Syllabus :
Home Page :

Syllabus for Online Entrance Test :

Here is the subject-wise syllabus for the Manipal Online Entrance Test 2014 to programs: MBBS, BDS, BTech, BPHARM, PHARMD.

Related : Manipal University MU OET 2016 FAQ Frequently Asked Questions :

Please note that the test papers in Physics, Chemistry, Biology, Mathematics and General English includes questions based on the 10+2 syllabus followed by major 10+2 Boards/Universities.

Newton’s Laws of Motion: First law of motion – force and inertia with examples -momentum – second law of motion, derivation of F=ma, mention of spring force F=kx, mention of basic forces in nature – impulse and impulsive forces with examples – second law as applied to variable mass situation – third law of motion – Identifying action and reaction forces with examples – derivation of law of conservation of momentum with examples in daily life – principle of rocket propulsion – inertial and non-inertial frames – apparent weight in a lift and rocket/satellite – problems.

Fluid Dynamics: Explanation of streamline and turbulent motion – mention of equation of continuity – mention of expressions for PE, KE and pressure energy of an element of a liquid flowing through a pipe – statement and explanation of Bemoulli’s Theorem and its application to uplift of an aircraft sprayer.

Surface Tension: Concept of adhesive and cohesive forces – definition of Surface energy and surface tension and angle of contact – explanation of capillary rise and mention of its expression – mention of application of surface tension to (i) formation of drops and bubbles (ii) capillary action in wick of a lamp (iii) action of detergents.

Work – Power – Energy: Work done by a force – F.S – unit of work – graphical representation of work done by a constant and variable force – power – units of power – energy – derivation of expression for gravitation potential energy and kinetic energy of a moving body – statement of work – energy theorem – mention of expression for potential energy of a spring – statement and explanation of law of conservation of energy – illustration in the case of a body sliding down on an inclined plane – discussion of special case = 90 degree, for a freely falling body – explanation of conservative and non conservative forces with examples – explanation of elastic and inelastic collisions with examples – coefficient of restitution – problems.

Gravitation: Statement and explanation of Law of Gravitation – definition of G – derivation of relation between g and G – mention of expression for variation of g with altitude, depth and latitude – statement and explanation of Kepler’s Laws of planetary motion – definition of orbital velocity and escape velocity and mention of their expressions – satellites – basic concepts of geo-stationary satellites, launching of satellites – IRS and communication satellites – brief explanation of Inertial mass and gravitational mass – weightlessness – remote sensing and essentials of space communication – problems.

Concurrent Co-plannar forces: Definition of resultant and equilibrant – statement of law of parallelogram of forces – derivation of expression for magnitude and direction of two concurrent coplanar forces – law of triangle of forces and its converse – Lami’s Theorem – problems.

Gas Laws: Statement and explanation of Boyle’s Law and Charles’ Law – definition of Pressure and Volume Coefficient of a gas – absolute zero – Kelvin scale of temperature – mention of perfect gas equation – explanation of isothermal and adiabatic changes – mention of Van-der-Waal’s equation of state for real gases.

Mode of heat transfer: Conduction of heat – steady state – temperature gradient – definition of coefficient of thermal conductivity – basic concepts of convection of heat – radiation – properties of thermal radiation – radiant energy – definition of emissivity and absorptivity – perfect black body – statement and explanation of Kirchhoff’s Law. Newton’s Law of cooling – Stefan’s Law – Wien’s Displacement and Planck’s Law – qualitative explanation of Solar Constant and surface temperature of sun – principle and working of total radiation pyrometer – problems.

Waves: Waves around us – brief note on light waves, sound waves, radio waves, micro waves, seismic waves – wave as a carrier of energy – classification of waves. (i) based on medium – mechanical and electromagnetic waves (ii) based on vibration of particles in the medium – Longitudinal & Transverse waves – one, two & three dimensional waves with example – definition of wave amplitude, wave frequency, wave period, wavelength and wave velocity – concept to establish the relation between pathl of phase of a wave – derivation v=f difference and phase difference – definition of a progressive wave – and its characteristics – derivation of equation of a progressive wave – different forms of a progressive wave equation – definition of wave intensity – mention of expression of wave intensity and its unit – statement and explanation of principles of superposition of waves with examples – problems.

Sound: Properties of sound – speed of sound in a gas – explanation of Newton’s Formula for speed of sound – correction by Laplace – Newton – Laplace Formula – discussion of factors affecting speed i.e. pressure, temperature, humidity and wind – definition of sound intensity – explanation of loudness and its unit – definition of intensity level and its unit – mention of relation between intensity and loudness – distinction between noise and musical note – characteristics of a musical note – phenomenon of beats and its theory – application of beats (i) to find the frequency of a note (ii) to tune the musical instruments -Doppler Effect – derivation of expression for apparent frequency in general case and discussion to special cases – qualitative comparison of Doppler Effect in sound and light – problems.

Refraction at a plane surface: Refraction through a parallel sided glass slab – derivation of expressions for lateral shift and normal shift (object in a denser medium) – total internal reflection and its applications -optical fibers and its application in communication – problems.

Refraction through a prism: Derivation of expression for the refractive index in terms of A and D -dispersion through a prism – experimental – arrangement for pure spectrum – deviation produced by a thin prism – dispersive power – mention of condition for dispersion without deviation – problems.

Refraction at a spherical surface: Derivation of the relation – connecting n,u,v and r for refraction at a spherical surface (concave towards a point object in a denser medium) derivation of lens maker’s formula -power of a lens – magnification – derivation of expression for the equivalent focal length of combination of two thin lenses in contact – mention of expression for equivalent focal length of two thin lenses separated by a distance – problems.

Introduction to Theories of Light: A brief explanation of Newton’s corpuscular theory, Huygen’s wave theory and Maxwell’s electromagnetic theory – mention of expression for o, qualitative explanation of Hertz’s experiment – brief eom speed of light C=1/ explanation of Planck’s quantum theory of radiation -dual nature of light.

Interference: Explanation of the phenomenon theory of interference – derivation of conditions for constructive and destructive interference.

Young’s Double-slit Experiment, derivation of expression for fringe width – qualitative explanation of interference at thin films and Newton’s rings – problems.

Diffraction: Explanation of the phenomenon – distinction between Fresnel and Fraunhoffer Diffraction -qualitative explanation of diffraction at single slit and analysis of diffraction pattern (Fraunhoffer type) – qualitative explanation of plane diffraction grating at normal incidence – limit of resolution – resolving power – Rayleigh’s Criterion – definition and mention of expression for resolving powers of microscope and telescope – problems.

Polarisation: Explanation of the phenomenon – representation of polarized and unpolarised light -explanation of plane of polarization and plane of vibration – methods of producing plane polarized light : by reflection – Brewster’s Law, refraction, double refraction, selective absorption – construction and application of polaroids – optical activity – specific rotatory power – construction and working of Laurent’s half shade polarimeter – mention of circularly and elliptically polarized light – problems.

Speed of light: Michelson’s rotating mirror experiment to determine of light – importance of speed of light.

Electric charges: Concept of charge – Coulomb’s Law, absolute and relative permittivity – SI unit of charge.

Electrostatic Field: Concept of electric field – definition of field strength – derivation of expression for the field due to an isolated change, concept of dipole – mention of expression for the field due to a dipole -definition of dipole moment – mention of expression for torque on a dipole – explanation of polarization of a dielectric medium – dielectric strength – concept of lines of force and their characteristics – explanation of electric flux – statement and explanation of Gauss theorem and its applications to derive expressions for electric intensity (a) near the surface of a charged conductor (b) near a spherical conductor – concept of electric potential – derivation of the relation between electric field and potential – derivation of expression for potential due to an isolated charge – explanation of potential energy of a system of charges – problems.

Capacitors: Explanation of capacity of a conductor and factors on which it depends – definition of capacitance and its unit – derivation of expression for capacity of a spherical conductor – principle of a capacitor – derivation of expression for capacitance of parallel plate capacitor – mention of expression for capacitance of spherical and cylindrical capacitors – derivation of expression for energy stored in a capacitor – derivation of expression for equivalent capacitance of capacitors in series and parallel – mention of uses of capacitors – problems.

Electric current: Microscope view of current through conductors (random motion of electrons) – explanation of drift d -nvelocity and mobility – derivation of expression for current I = neA deduction of Ohm’s Law – origin of resistance – definition of resistivity – temperature coefficient of resistance – concept of super conductivity – explanation of critical temperature, critical field and high temperature superconductors – mention of uses of superconductors – thermistors and mention of their uses – colour code for resistors -derivation of expression for effective resistance of resistances in series and parallel -derivation of expression for branch currents – definition of emf and internal resistance of a cell – Ohm’s law applied to a circuit -problems.

Kirchoff’s Laws: Statement and explanation of Kirchoff’s Laws for electrical network – explanation of Wheatstone’s network – derivation of the condition for its balance by applying Kirchoff’s laws – principle of metre bridge – problems.

Magnetic effect of electric current: Magnetic field produced by electric current – statement and explanation of Biot – Savart (Laplace’s) Law – derivation of expression for magnetic field at any point on the axis of a circular coil carrying current and hence expression for magnetic field at the centre – current in a circular coil as a magnetic dipole – explanation of magnetic moment of the current loop – mention of expression for the magnetic field due to (i) a straight current carrying conductor (ii) at a point on the axis of a solenoid – basic concepts of terrestrial magnetism – statement and explanation of Tangent law -construction and theory of tangent galvanometer – problems.

Mechanical effect of electric current: Mention of expression for force on a charge moving in magnetic field – mention of expression for force on a conductor carrying current kept in a magnetic field – statement of Fleming’s left hand rule – explanation of magnetic field strength in terms of flux density – derivation of expression for the force between two parallel conductors carrying currents and hence definition of ampere -mention of expression for torque on a current loop kept in an uniform magnetic field – construction and theory of moving coil galvanometer – conversion of a pointer galvanometer into an ammeter and voltmeter -problems.

Electromagnetic Induction: Statement explanation of Faraday’s laws of electromagnetic induction and Lenz’s Law – derivation of expression for emf induced in a rod moving in a uniform magnetic field – explanation of self induction and mutual induction – mention of expression for energy stored in a coil -explanation of eddy currents – alternating currents – derivation of expression for sinusoidal emf – definition of phase and frequency of ac – mention of the expression for instantaneous, peak, rms, and average values – derivation of expression for current in case of ac applied to a circuit containing (i) pure resistor (ii) inductor (iii) capacitor – derivation of expression for impedance and current in LCR series circuit by phasor diagram method – explanation of resonance – derivation of expression for resonant frequency – brief account of sharpness of resonance and Q-factor – mention of expression for power in ac circuits – power factor and wattless current – qualitative description of choke -basic ideas of magnetic hysteresis – construction and working of transformers – mention of sources of power loss in transformers – ac meters – principle and working of moving iron meter – qualitative explanation of transmission of electrical power – advantages of ac and dc – problems.

Leave a Reply

How to add comment : 1) Type your comment below. 2) Type your name. 3) Post comment. © 2021

Contact Us   Privacy Policy   SiteMap