You are here: Home > ZZ-Old-Archived-Posts
All posts from

VIT VITEEE 2016 Syllabus : Engineering Entrance Examination

Organisation : VIT University
Announcement : Syllabus
Entrance Exam : VITEEE – 2016 VIT Engineering Entrance Examination

Want to comment on this post?
Go to bottom of this page.

Home Page : http://vit.ac.in/

VITEEE – 2016 Syllabus :
Physics : https://www.entrance.net.in/uploads/5759-VITEEE2016%20Physics.pdf
Chemistry : https://www.entrance.net.in/uploads/5759-VITEEE2016%20Chemistry.pdf
Mathematics : https://www.entrance.net.in/uploads/5759-VITEEE2016%20Mathematics.pdf
Biology : https://www.entrance.net.in/uploads/5759-VITEEE2016%20Biology.pdf
English : https://www.entrance.net.in/uploads/5759-syllabus_eng.pdf

Syllabus :

INSTRUCTIONS TO THE CANDIDATES :
1. Question Nos. 121 to 125 are questions on English and it will be Multiple Choice Questions

Related : VITEEE 2019 VIT Engineering Entrance Examination : www.entrance.net.in/14126.html

2. Question No. 121, 122 and 123 are Comprehension questions. They are based on short passages (30 -50 words) or lines of poems (2 -3) or dialogue (2 exchanges)
3. Question No. 124 and 125 are based on English Grammar and Pronunciation.
4. The candidates should read carefully the texts and the questions that follow and choose the CORRECT/ BEST answer from the options given for each question.

ENGLISH :
** Please note that the passages, lines of poems, dialogues, grammar and pronunciation items are chosen to suit the level of VITEEE takers

BIOLOGY :
1. Taxonomy :
Need for classification; three domains of life. Linnaean, Whittaker, Bentham and Hooker systems of classification. Salient features of non-chordates up to phyla levels and chordates up to class levels.

2. Cell and Molecular Biology :
Cell theory. Prokaryotic cell and it’s ultrastructure. Eukaryotic cell- cell wall, cell membrane, cytoskeleton, nucleus, chloroplast, mitochondria, endoplasmic reticulum, Golgi bodies, ribosomes, lysosomes, vacuoles and centrosomes. Cell cycle and division – amitosis, mitosis and meiosis. Search for genetic material; structure of DNA and RNA; replication, transcription, genetic code, translation, splicing, gene expression and regulation (lac operon) and DNA repair.

3. Reproduction :
Asexual reproduction – binary fission, sporulation, budding, gemmule formation and fragmentation. Vegetative propagation in plants, sexual reproduction in flowering plants and structure of flowers. Pollination, fertilization, development of seeds and fruits, seed dispersal, apomixis, parthenocarpy and poly-embryony. Human reproductive system. Gametogenesis, menstrual cycle, fertilization, implantation, embryo development upto blastocyst formation, pregnancy, parturition and lactation. Assisted reproductive technologies.

4. Genetics and evolution :
Chromosomes – structure and types, linkage and crossing over, recombination of chromosomes, mutation and chromosomal aberrations. Mendelian inheritance, chromosomal theory of inheritance, deviation from Mendelian ratio (incomplete dominance, co-dominance, multiple allelism, pleiotrophy), sex linked inheritance and sex determination in humans. Darwinism, neo Darwinism, Hardy and Weinberg’s principle and factors affecting the equilibrium: selection, mutation, migration and random genetic drift.

5. Human health and diseases :
Pathogens, parasites causing human diseases (malaria, dengue, chickengunia, filariasis, ascariasis, typhoid, pneumonia, common cold, amoebiasis, ring worm) and their control. Basic concepts of immunology, vaccines, antibiotics, cancer, HIV and AIDS. Adolescence, drug and alcohol abuse.

6. Biochemistry :
Structure and function of carbohydrates, lipids and proteins. Enzymes – types, properties and enzyme action. Metabolism – glycolysis, Kreb’s cycle and pentose phosphate pathway.

7. Plant physiology :
Movement of water, food, nutrients, gases and minerals. Passive diffusion, facilitated diffusion, and active transport. Imbibition, osmosis, apoplast and symplast transport and guttation. Transpiration, photosynthesis (light and dark reactions) and electron transport chain. Hormones and growth regulators, photo-periodism and vernalization. Nitrogen cycle and biological nitrogen fixation.

8. Human physiology :
Digestion and absorption, breathing and respiration, body fluids and circulation, excretory system, endocrine system, nervous system, skeletal and muscular systems. Locomotion and movement, growth, aging and death. Hormones – types of hormones, functions and disorders.

9. Biotechnology and its applications :
Recombinant DNA technology, applications in health, agriculture and industries; genetically modified organisms; Human insulin, vaccine and antibiotic production. Stem cell technology and gene therapy. Apiculture and animal husbandry. Plant breeding, tissue culture, single cell protein, fortification, Bt crops and transgenic animals. Microbes in food processing, sewage treatment, waste management and energy generation. Biocontrol agents and biofertilizers. Bio-safety issues, biopiracy and patents.

10. Biodiversity, ecology and environment :
Ecosystems: components, types, pyramids, nutrient cycles (carbon and phosphorous), ecological succession and energy flow in an ecosystem; Biodiversity – concepts, patterns, importance, conservation, hot spots, endangered organisms, extinction, Red data book, botanical gardens, national parks, sanctuaries, museums, biosphere reserves and Ramsar sites. Environmental issues: pollution and its control. Population attributes – growth, birth and death rate and age distribution.

PHYSICS :
1. Laws of Motion & Work, Energy and Power :
Law of conservation of linear momentum and its applications. Static and kinetic friction – laws of friction – rolling friction – lubrication. Work done by a constant force and a variable force; kinetic energy – work-energy theorem – power.

Conservative forces: conservation of mechanical energy (kinetic and potential energies) – non-conservative forces: motion in a vertical circle – elastic and inelastic collisions in one and two dimensions.

2. Properties of Matter :
Elastic behaviour – Stress-strain relationship – Hooke’s law – Young’s modulus – bulk modulus – shear modulus of rigidity – Poisson’s ratio – elastic energy. Viscosity – Stokes’ law – terminal velocity – streamline and turbulent flow – critical velocity. Bernoulli’s theorem and its applications. Heat – temperature – thermal expansion: thermal expansion of solids – specific heat capacity: Cp, Cv – latent heat capacity. Qualitative ideas of Blackbody radiation: Wein’s displacement Law – Stefan’s law.

3. Electrostatics :
Charges and their conservation; Coulomb’s law-forces between two point electric charges – Forces between multiple electric charges-superposition principle. Electric field – electric field due to a point charge, electric field lines; electric dipole, electric field intensity due to a dipole – behaviour of a dipole in a uniform electric field. Electric potential – potential difference-electric potential due to a point charge and dipole-equipotential surfaces – electrical potential energy of a system of two point charges. Electric flux-Gauss’s theorem and its applications. Electrostatic induction-capacitor and capacitance – dielectric and electric polarisation – parallel plate capacitor with and without dielectric medium – applications of capacitor – energy stored in a capacitor – Capacitors in series and in parallel – action of points – Van de Graaff generator.

4. Current Electricity :
Electric Current – flow of charges in a metallic conductor – drift velocity and mobility and their relation with electric current. Ohm’s law, electrical resistance – V-I characteristics – electrical resistivity and conductivity-classification of materials in terms of conductivity – Carbon resistors – colour code for carbon resistors – combination of resistors – series and parallel – temperature dependence of resistance – internal resistance of a cell – potential difference and emf of a cell – combinations of cells in series and in parallel. Kirchoff’s law – Wheatstone’s Bridge and its application for temperature coefficient of resistance measurement – Metrebridge – special case of Wheatstone bridge – Potentiometer principle – comparing the emf of two cells.

5. Magnetic Effects of Electric Current :
Magnetic effect of electric current – Concept of magnetic field – Oersted’s experiment – Biot-Savart law-Magnetic field due to an infinitely long current carrying straight wire and circular coil – Tangent galvanometer – construction and working – Bar magnet as an equivalent solenoid – magnetic field lines. Ampere’s circuital law and its application. Force on a moving charge in uniform magnetic field and electric field – cyclotron – Force on current carrying conductor in a uniform magnetic field – Forces between two parallel current carrying conductors – definition of ampere. Torque experienced by a current loop in a uniform magnetic field – moving coil galvanometer – conversion to ammeter and voltmeter – current loop as a magnetic dipole and its magnetic dipole moment – Magnetic dipole moment of a revolving electron.

6. Electromagnetic Induction and Alternating Current :
Electromagnetic induction – Faraday’s law – induced emf and current – Lenz’s law. Self induction – Mutual induction – self inductance of a long solenoid – mutual inductance of two long solenoids. Methods of inducing emf – (i) by changing magnetic induction (ii) by changing area enclosed by the coil and (iii) by changing the orientation of the coil (quantitative treatment). AC generator – commercial generator. (Single phase, three phase). Eddy current – applications – transformer – long distance transmission. Alternating current – measurement of AC – AC circuit with resistance – AC circuit with inductor – AC circuit with capacitor – LCR series circuit – Resonance and Q – factor – power in AC circuits.

7. Optics :
Reflection of light, spherical mirrors, mirror formula. Refraction of light, total internal reflection and its applications, optical fibers, refraction at spherical surfaces, lenses, thin lens formula, lens maker’s formula. Magnification, power of a lens, combination of thin lenses in contact, combination of a lens and a mirror. Refraction and dispersion of light through a prism. Scattering of light-blue colour of sky and reddish appearances of the sun at sunrise and sunset. Wavefront and Huygens’s principle – Reflection, total internal reflection and refraction of plane wave at a plane surface using wavefronts. Interference – Young’s double slit experiment and expression for fringe width – coherent source – interference of light – Formation of colours in thin films – Newton’s rings. Diffraction – differences between interference and diffraction of light- diffraction grating. Polarisation of light waves – polarisation by reflection – Brewster’s law – double refraction – nicol prism – uses of plane polarised light and Polaroids – rotatory polarisation – polarimeter.

8. Dual Nature of Radiation and Atomic Physics :
Electromagnetic waves and their characteristics – Electromagnetic spectrum – Photoelectric effect – Light waves and photons – Einstein’s photoelectric equation – laws of photoelectric emission – particle nature of light – photo cells and their applications. Atomic structure – discovery of the electron – specific charge (Thomson’s method) and charge of the electron (Millikan’s oil drop method) – alpha scattering – Rutherford’s atom model.

9. Nuclear Physics :
Nuclear properties – nuclear radii, masses, binding energy, density, charge – isotopes, isobars and isotones – nuclear mass defect – binding energy – stability of nuclei – Bainbridge mass spectrometer. Nature of nuclear forces – Neutron – discovery – properties – artificial transmutation – particle accelerator. Radioactivity – alpha, beta and gamma radiations and their properties – Radioactive decay law – half life – mean life – artificial radioactivity – radio isotopes – effects and uses – Geiger – Muller counter. Radio carbon dating. Nuclear fission – chain reaction – atom bomb – nuclear reactor – nuclear fusion – Hydrogen bomb – cosmic rays – elementary particles.

10. Semiconductor Devices and their Applications :
Semiconductor basics – energy band in solids: difference between metals, insulators and semiconductors – semiconductor doping – Intrinsic and Extrinsic semiconductors. Formation of P-N Junction – Barrier potential and depletion layer-P-N Junction diode – Forward and reverse bias characteristics – diode as a rectifier – Zener diode-Zener diode as a voltage regulator – LED. Junction transistors – characteristics – transistor as a switch – transistor as an amplifier – transistor as an oscillator. Logic gates – NOT, OR, AND, EXOR using discrete components – NAND and NOR gates as universal gates – De Morgan’s theorem – Laws and theorems of Boolean algebra.

Leave a Reply

How to add comment : 1) Type your comment below. 2) Type your name. 3) Post comment.

www.entrance.net.in © 2021

Contact Us   Privacy Policy   SiteMap